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In this work, the initial-boundary value problem of two-dimensional Cahn–Hilliard equa-
tion is considered. A class of fully discrete dissipative Fourier spectral schemes are pro-
posed. Moreover, semi-implicit prediction–correction schemes are presented. The
numerical simulations are performed to demonstrate the effectiveness of the proposed
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1. Introduction

In this paper, the Fourier spectral approximations of the Cahn–Hilliard model
@tuþMDðcDu� /ðuÞÞ ¼ 0; ðx; yÞ 2 X; t > 0;
uðx; y;0Þ ¼ u0ðx; yÞ; ðx; yÞ 2 X;

�
ð1Þ
with periodic boundary conditions on the square X ¼ ð0;2pÞ2 are presented, where M is the mobility constant, c > 0 is a
phenomenological constant modelling the effect of interfacial energy, u is the order parameter,
w ¼ /ðuÞ � cDu
is a generalized chemical potential energy with /ðuÞ ¼ w0ðuÞ. Here,
wðuÞ ¼ 1
4
ðu2 � 1Þ2
is an approximation of the free energy corresponding to the binodal points u ¼ þ1 and u ¼ �1 and spinodal interval
ð�1=

ffiffiffi
3
p

;1=
ffiffiffi
3
p
Þ. Without lose of generality, we assume M ¼ 1. Define
FðuÞ ¼
Z

X
wðuÞ þ c

2
jruj2

� �
dX:
. All rights reserved.
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Then it can be verified that
d
dt
FðuÞ þ

Z
X
jrwj2dX ¼ 0; ð2Þ
which yields
d
dt
FðuÞ 6 0: ð3Þ
Hence, the total energy FðuÞ, the sum of the free energy
R

X wðuÞdX and the interfacial energy
R

X
c
2 jruj2dX, is dissipative. This

means that the phase separation evolution is from a higher initial state into a lower energy state. Also, the mass conservation
holds as follows:
1
jXj

Z
X

uðx; y; tÞdX ¼ 1
jXj

Z
X

u0ðx; yÞdX; t > 0: ð4Þ
The Cahn–Hilliard model was originally introduced in [3] to describe the phase separation phenomena. There has been a
significant research interest in this model (see, e.g., [4,7,12,16,19–21,27]) and the references therein. Several finite element
schemes were studied with mathematical rigor by Barrett et al. [1] and Elliott et al. [8–11]. Recently, Feng and Prohl [14]
proposed the finite element method for a class of Cahn–Hilliard equation involving a small parameter. Error estimates with
quasi-optimal order in time and optimal order in space are obtained for their proposed methods under minimum regularity
assumptions on the initial data and the domain. With finite difference approaches, Sun [22] proposed a linearized second-
order finite difference scheme which is uniquely solvable in a discrete L2ðXÞ-norm. In Furihata [15], a conservative finite dif-
ference scheme was proposed to solve the one-dimensional Cahn–Hilliard equation. It is proved that their scheme is stable in
the sense that the decay of energy is preserved. In [18,26], a combined spectral and large time-stepping methods were pro-
posed and studied for the nonlinear diffusion equations for thin film epitaxy. In He and Liu [19], the convergence of the spa-
tial discretization of the Cahn–Hilliard is considered. In resent study [5,13,23], the unconditionally stable algorithms were
developed for Cahn–Hillard equation. These algorithms allow for an increasing time step in Cahn–Hillard systems as time
proceeds.

The purpose of this paper is to investigate new dissipative numerical schemes for the Cahn–Hilliard equation based on the
alternative strategy. In Section 2, we propose a class of the fully discrete dissipative spectral schemes and establish the dis-
crete analogues of (2)–(4). In Section 3, the accuracy tests are carried out. The final section is devoted to the numerical sim-
ulations for the temporal evolution of the morphological patterns during a spinodal decomposition and subsequent
coarsening. The numerical results using the proposed schemes are presented to demonstrate the effectiveness of our
schemes.

2. Dissipative spectral approximation

Let C1p ðXÞ be the sets of all restrictions onto X of all 2p-periodic, C1-functions on R2. For any r P 0 let Hr
pðXÞ be the clo-

sure of C1p ðXÞ in the usual Sobolev norm of HrðXÞ. The inner product, the semi-norm and the norm of Sobolev space
Hr

pðXÞ; r P 0 are defined by
ðu; vÞr ¼
Xþ1

m;n¼�1
ð1þm2 þ n2Þr ûm;n

�̂vm;n; jujr ¼
Xþ1

m;n¼�1
ðm2 þ n2Þrjûm;nj2

 !1
2

and kukr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu;uÞr

p
, respectively. If r ¼ 0, then the index r is omitted. Clearly, kruk ¼ juj1; kDuk ¼ juj2, etc. For simplicity, de-

note L2ðXÞ ¼ H0
pðXÞ. Further let H�r

p ðXÞ be the dual space of Hr
pðXÞ, and hu;viLðH�r

p ;Hr
pÞ be the duality paring between H�r

p ðXÞ and
Hr

pðXÞ. Let @tu ¼ @u
@t , etc.

2.1. Dissipative spectral schemes

For given function u0 2 L2ðXÞ, the weak solution of (1) is a function u 2 L1ð0; T; L2ðXÞÞ \ L2ð0; T; H2
pðXÞÞ such that
ð@tu;vÞ þ cðDu;DvÞ � ð/ðuÞ;DvÞ ¼ 0; 8v 2 H2
pðXÞ; t 2 ð0; T�;

uðx; y; 0Þ ¼ u0ðx; yÞ:

(
ð5Þ
Since Fourier spectral method is one of the most suitable spatial approximation methods for periodic problems [2,6,25], it
will be employed to handle the spatial discretization. Denote
SN ¼ spanfeiðmxþnyÞj � N 6 m; n 6 N � 1g:
Moreover, we define the orthogonal projection operator PN : L2ðXÞ ! SN such that
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ðu� PNu;vÞ ¼ 0; 8v 2 SN:
Our main interest in this work is to investigate the time-stepping methods for the problem (1). Let s be the time step.
Set ukðx; yÞ ¼ uðx; y; ksÞ, also denoted by uk for simplicity. Let uk

N 2 SN be the approximation to the solution of (1) at time
tk ¼ ks. Denote the nonlinear term /ðuÞ ¼ uðu2 � 1Þ. The classical first-order semi-implicit scheme (BD1) in [4] reads as
follows
1
s ðu

kþ1
N � uk

NÞ þ cD2ukþ1
N ¼ PND/ðuk

NÞ;
u0

N ¼ PNu0ðx; yÞ:

(

In practice, it is known that the semi-implicit treatment in time allows a consistently large time step size. Their numerical
simulations indicate that the time step in a semi-implicit method can be two orders of magnitude larger than that in an
explicit method. The accuracy in time can be improved by using higher-order semi-implicit schemes. For instance, a sec-
ond-order backward differentiation for @tu and a second-order Adams–Bashforth for the explicit treatment of the nonlinear
term for (1) lead to the following second-order scheme (BD2/AB)
1
2s ð3ukþ1

N � 4uk
N þ uk�1

N Þ þ cD2ukþ1
N ¼ PNDð2/ðuk

NÞ � /ðuk�1
N ÞÞ;

u0
N ¼ PNu0ðx; yÞ:

(

Also, we can use the second-order semi-implicit Runge–Kutta scheme (SIRK2) in [17], which gives the following time dis-
cretization scheme
1
s ukþ1

N;pre � uk
N

� �
þ c

2 D2 ukþ1
N;pre þ uk

N

� �
¼ PND/ uk

N

� �
;

1
s ukþ1

N � uk
N

� �
þ c

2 D2 ukþ1
N þ uk

N

� �
¼ 1

2 PND / ukþ1
N;pre

� �
þ / uk

N

� �� �
;

u0
N ¼ PNu0ðx; yÞ:

8>>><
>>>:
However, these schemes are not dissipative. We now describe our new time-stepping method. Denote
U0ðu;v ;aÞ ¼
uþ v

2

� �
ðau2 þ ð1� aÞv2 � 1Þ:
Clearly, U0ðu;u;aÞ ¼ /ðuÞ. In particular,
U0 ukþ1
N ;uk

N;
1
2

� 	
¼ ukþ1

N þ uk
N

2

� 	
ukþ1

N

� �2 þ uk
N

� �2

2
� 1

 !
:

Hence, we can use U0 ukþ1
N ;uk

N;a
� �

to approximate the nonlinear term /ðukÞ, which is different from the Runge–Kutta method.
The fully discrete spectral scheme for solving (1) is as follows:
1
s ukþ1

N � uk
N

� �
þ c

2 D2 ukþ1
N þ uk

N

� �
� PNDU0 ukþ1

N ;uk
N;a

� �
¼ 0; k P 1;

u0
N ¼ PNu0ðx; yÞ:

(
ð6Þ
Moreover, we use the large time-stepping method in [26] and propose the following scheme
1
s ðu

kþ1
N � uk

N; vÞ þ bsðrðukþ1
N � uk

NÞ;rvÞ þ c
2 ðDðu

kþ1
N þ uk

NÞ;DvÞ
�ðU0ðukþ1

N ;uk
N ;aÞ;DvÞ ¼ 0; 8v 2 SN; k P 1;

u0
N ¼ PNu0ðx; yÞ:

8><
>: ð7Þ
It is observed that scheme (7) becomes scheme (6) if b ¼ 0. Let
Uðu;v ;aÞ ¼ U0ðu; v;aÞ þ bsðu� vÞ; 8u; v 2 SN :
An alternative formulation of (7) is to find ukþ1
N 2 SN satisfying
1
s ukþ1

N � uk
N

� �
þ c

2 D2 ukþ1
N þ uk

N

� �
� PNDU ukþ1

N ;uk
N;a

� �
¼ 0; k P 1;

u0
N ¼ PNu0ðx; yÞ:

(
ð8Þ
We now turn to establish the discrete analogues of (2)–(4). Let a P 1
2 and b P 0. If uk

N is the numerical solution of scheme
(7), then the total energy is dissipative:
F ukþ1
N

� �
6 F uk

N

� �
; k P 0: ð9Þ
In fact, it is easy to be show that
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F ukþ1
N

� �
� F uk

N

� �
¼ � a� 1

2

� 	
1

2s

Z
X

ukþ1
N

� �2 � uk
N

� �2
� �2

dX� b
Z

X
ukþ1

N � uk
N

� �2
dX

� s
Z

X
r PNU ukþ1

N ; uk
N;a

� �
� c

2
D ukþ1

N þ uk
N

� �� �


 


2dX:
By taking v ¼ 1 in (7), we find that
Z
X

ukþ1
N ðx; yÞdX ¼

Z
X

uk
Nðx; yÞdX ¼

Z
X

PNu0ðx; yÞdX; ð10Þ
which implies the mass conservation.
From (9), we see that
Z

X
wðuk

NÞ þ
c
2
ruk

N



 

2� �
dX ¼ Fðuk

NÞ 6 Fðu0
NÞ:
On the other hand, by using the Poincaré inequality, we obtain from (10) that
uk
N �

1
jXj

Z
X

PNu0ðx; yÞdX
����

���� ¼ uk
N �

1
jXj

Z
X

uk
Nðx; yÞdXk 6 kruk

N

����
����:
Hence, if u0ðx; yÞ 2 H1
pðXÞ;a P 1

2 and b P 0, we have the a priori estimation as follows:
jjjuN jjjL1ð0;T;H1
pðXÞÞ
¼max

k
uk

N

�� ��
1 6 CðX; ku0k1; cÞ:
Thus the scheme (7) is stable.

2.2. The semi-implicit schemes

Let a P 1
2 and b P 0. Given an integer m P 1, the implementation of the dissipative implicit scheme (7) is to find ukþ1

N 2 SN

satisfying
1
s ukþ1;½0�

N � uk
N

� �
þ c

2 D2 ukþ1;½0�
N þ uk

N

� �
� bsD ukþ1;½0�

N � uk
N

� �
¼ PND/ uk

N

� �
;

1
s ukþ1;½m�

N � uk
N

� �
þ c

2 D2 ukþ1;½m�
N þ uk

N

� �
� bsD ukþ1;½m�

N � uk
N

� �
¼ PNDU0 ukþ1;½m�1�

N ; uk
N;a

� �
;

ukþ1
N ¼ ukþ1;½m�; m ¼ 1;2; . . . ; k P 1;

u0
N ¼ PNu0ðx; yÞ:

8>>>>>><
>>>>>>:

ð11Þ
In particular, in the case of m ¼ 1, we obtain the semi-implicit prediction–correction scheme as follows:
1
s ukþ1

N;pre � uk
N

� �
þ c

2 D2 ukþ1
N;pre þ uk

N

� �
� bsD ukþ1

N;pre � uk
N

� �
¼ PND/ uk

N

� �
;

1
s ukþ1

N � uk
N

� �
þ c

2 D2 ukþ1
N þ uk

N

� �
� bsD ukþ1

N � uk
N

� �
¼ PNDU0 ukþ1

N;pre;u
k
N;a

� �
;

u0
N ¼ PNu0ðx; yÞ:

8>>><
>>>:

ð12Þ
The existence and uniqueness of (11) and (12) are easy to show by using the Lax–Milgram theorem. In the Fourier space, (12)
can be written as
~ukþ1
pre ðkÞ ¼ AðkÞ~ukðkÞ � BðkÞ ~/ uk

N

� �n o
k
;

~ukþ1ðkÞ ¼ AðkÞ~ukðkÞ � BðkÞ ~U0 ukþ1
N;pre;u

k
N ;a

� �n o
k
;

8><
>: ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq
where k ¼ ðk1; k2Þ is a vector in the Fourier space, � N
2 6 k1; k2 6

N
2 � 1; jkj ¼ k2

1 þ k2
2 is the magnitude of k; ~ukðkÞ and

~/ uk
N

� �n o
k

represent the Fourier transforms of uk
N and /ðuk

NÞ, respectively;� � � �

AðkÞ ¼ 1þ 1

2 csjkj4 þ bs2jkj2
�1

1� 1
2 csjkj4 þ bs2jkj2 ;

BðkÞ ¼ 1þ 1
2 csjkj4 þ bs2jkj2

� ��1
sjkj2:
We now describe the algorithm of (11) by an offline–online procedure.
Offline Stage
In the offline stage, all of the following precomputing are performed only once.

1. Calculate ~u0ðkÞ and ~/ðu0
NÞ

n o
k
.

2. Evaluate and store AðkÞ and BðkÞ.
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Online Stage
In the online stage we share the advantage of the explicit scheme. So we need only compute
Table 1
The err

a

0:51
0:52
0:53
0:54
0:55
~ukþ1;½0�ðkÞ ¼ AðkÞ~ukðkÞ � BðkÞ ~/ uk
N

� �n o
k
;

~ukþ1;½n�ðkÞ ¼ AðkÞ~ukðkÞ � BðkÞ ~U0 ukþ1;½n�1�
N ;uk

N;a
� �n o

k
; n ¼ 1;2; . . . ;m

8><
>:
in which ~ukðkÞ ¼ ~uk;½m�ðkÞ for k P 1. To reduced the computational cost, the nonlinear term should be evaluated by using the
Orszag’s transform method.

We list two important results as follows.

� (a) If a ¼ 1
2, by using the method in [17] we can show that the scheme (12) is second-order in time for any s.

� (b) If a ¼ 1, the scheme (12) is first-order in time.
3. Accuracy test

We now consider the accuracy test. To this end, we define the relative error as
E�ðuðtÞÞ ¼
kuðtÞ � uNðtÞkL1ðXÞ

kuðtÞkL1ðXÞ
:

Since the exact solution for problem (1) is unknown, we use numerical results of the scheme (12) with se ¼ 0:01s and Ne ¼ N
as the ‘‘exact” solution.

In this section, we consider (1) with the initial value
uðx; y; 0Þ ¼ sin
2p
L

x
� 	

sin
2p
L

y
� 	

;

where L is the periodic in space x and y. In all calculations, we take L ¼ 10; T ¼ 1, c ¼ 0:2 and N ¼ 128.
The numerical results are presented in Tables 1 and 2. Table 1 shows that scheme (11) is second-order accurate in time if

a ¼ 1
2þ OðsÞ. Table 2 indicates that the scheme (12) is of second-order in time for any s if a ¼ 1

2. Several other values of a are
also considered in the case b – 0.

We now carry out numerical simulations using the scheme (12). A N � N Fourier modes has been used on the square
½0;N� � ½0;N�. The morphological evolution from the ‘‘as-quenched” state of the system which is determined by an initial con-
dition uðx; y;0Þ ¼ u0 þ duðx; yÞ, where u0 is the average composition of the solution and duðx; yÞ is a random perturbation with
values distributed uniformly between þ0:05 and �0:05. Hence, we have to control the numerical errors. We point out here
that the small perturbations are generated by a random number generator. In all calculations, we take u0 ¼ �0:45, c ¼ 0:5
and the same initial value for the same N.

The numerical results are presented in Tables 3–5. In Table 3, we compare the scheme (12) in the case a ¼ 1 (PC1), which
is a first-order scheme, with the scheme BD1. It indicates that PC1 is better than BD1. Also, we discusses the choice of b for
a ¼ 1.

Table 4 compares the prediction–correction scheme (12) in the case a ¼ 0:5 and b ¼ 0 (PC2) with other second-order
schemes. It indicates that PC2 is better than SIRK2 and BD2/AB. In Table 5, we consider the errors of scheme (11) with
a ¼ 0:5 and b ¼ 0 for different iterative number m. It shows that PC2 provides very accurate numerical results.

4. Numerical simulations

In this section some results of the simulations using the scheme (12) with N ¼ 128;a ¼ 0:5 and m ¼ 1 are shown. The
time step s is chosen to be 0:5 although as large as 2 can be used (see Fig. 6). A 128� 128 Fourier modes has been used
on the square ½0;128� � ½0;128�. The morphological evolution from the ‘‘as-quenched” state of the system which is deter-
mined by an initial condition uðx; y;0Þ ¼ u0 þ duðx; yÞ, where u0 is the average composition of the solution and duðx; yÞ is a
random perturbation with values distributed uniformly between þ0:05 and �0:05. Typical spatial and temporal evolutions
or E�ðuð1ÞÞ obtained by using scheme (11) with b ¼ 0.

m ¼ 1 m ¼ 2

s ¼ 0:1 s ¼ 0:01 s ¼ 0:001 s ¼ 0:1 s ¼ 0:01 s ¼ 0:001

7.3E�4 2.7E�5 1.5E�6 4.0E�4 1.1E�5 1.3E�6
8.6E�4 4.1E�5 2.8E�6 4.6E�4 2.4E�5 2.6E�6
1.0E�3 5.4E�5 4.1E�6 5.2E�4 3.7E�5 3.9E�6
1.1E�3 6.8E�5 5.5E�6 5.8E�4 5.1E�5 5.3E�6
1.3E�3 8.2E�5 6.8E�6 6.4E�4 6.4E�5 6.6E�6



Table 2
The error E�ðuð1ÞÞ obtained by using scheme (11) with m ¼ 1.

a b ¼ 0 b ¼ 0:001

s ¼ 0:1 s ¼ 0:01 s ¼ 0:001 s ¼ 0:1 s ¼ 0:01 s ¼ 0:001

0:5 6.0E�4 1.5E�5 2.0E�7 6.0E�4 1.5E�5 2.0E�7
0:75 4.5E�3 3.5E�4 3.3E�5 4.5E�3 3.5E�4 3.3E�5
1 9.7E�3 7.0E�4 6.7E�5 9.7E�3 7.0E�4 6.7E�5

Table 3
The error E�ðuð10ÞÞ obtained by using scheme (12) with a ¼ 1 and m ¼ 1.

N BD1 PC1 b ¼ 0:25 b ¼ 0:5 b ¼ 1

s ¼ 0:1 s ¼ 0:01 s ¼ 0:1 s ¼ 0:01 s ¼ 0:1 s ¼ 0:01 s ¼ 0:1 s ¼ 0:01 s ¼ 0:1 s ¼ 0:01

64 1.5E�3 1.5E�4 7.0E�4 7.1E�5 8.1E�4 7.2E�5 9.1E�4 7.3E�5 1.1E�3 7.5E�5
128 1.7E�3 1.7E�4 7.9E�4 7.9E�5 8.1E�4 8.0E�5 9.1E�4 8.1E�5 1.0E�3 8.3E�5
256 2.3E�3 2.3E�4 8.9E�4 8.8E�5 8.3E�4 9.1E�5 9.2E�4 9.1E�5 1.3E�3 9.2E�5

Table 4
The error E�ðuð10ÞÞ using different temporal discretization schemes.

N SIRK2 BD2/AB PC2

s ¼ 0:1 s ¼ 0:01 s ¼ 0:1 s ¼ 0:01 s ¼ 0:1 s ¼ 0:01

64 1.3E�4 1.5E�6 6.9E�5 3.4E�6 4.9E�5 5.9E�7
128 1.4E�4 1.6E�6 9.4E�5 4.5E�6 4.8E�5 6.1E�7
256 1.2E�4 1.4E�6 1.1E�4 4.4E�6 5.2E�5 6.3E�7

Table 5
The error E�ðuðtÞÞ;a ¼ 0:5, b ¼ 0; s ¼ 0:1.

t PC2 m ¼ 2

N ¼ 64 N ¼ 128 N ¼ 256 N ¼ 64 N ¼ 128 N ¼ 256

2 1.3E�4 1.6E�4 1.6E�4 1.4E�4 1.7E�4 1.8E�4
4 4.6E�5 4.6E�5 4.4E�5 4.2E�5 5.0E�5 4.3E�5
6 4.5E�5 4.4E�5 4.1E�5 4.2E�5 4.7E�5 3.9E�5
8 4.6E�5 4.5E�5 4.1E�5 4.4E�5 4.8E�5 4.1E�5

10 4.9E�5 4.8E�5 5.2E�5 4.7E�5 5.1E�5 4.5E�5
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of the ‘‘as-quenched” microstructures are presented in Figs. 1–5 for u0 ¼ 0 and 0:45, respectively, in the spinodal region. The
simulations show that initial compositions which are perturbations of a uniform state in the spinodal interval evolve rapid
into a phase separated structure. After this rapid evolution a slow coarsening process takes place involving an increase of the
size of the phase domains.

In Figs. 1–3, we presented the temporal evolution of morphological patterns during spinodal decomposition and subse-
quent coarsening without the elastic strain effect; and thus we improve the corresponding results in Copetti and Elliot [7].

In Wang et al. [24], a microscopic kinetic model including the elastic strain effect were considered to simulate the mor-
phological evolution controlled by a transformation-induced elastic strain during a solid state precipitation. Chen and Shen
[4] considered the Cahn–Hillard model in the case u0 ¼ 0. We now consider the microstructure evolution in elastically
homogeneous coherent two-phase solids using the Cahn–Hilliard equation. In coherent systems, one of the main contribu-
tions to the total driving force for microstructure evolution is the elastic strain energy caused by the lattice mismatch
between the two phase. It is safe to assume that the mechanical equilibrium in a system is established much faster than
any diffusion processes. As a result, the system is always at mechanical equilibrium during phase separation or during coars-
ening. Therefore, at each time step, the mechanical equilibrium equations have to be solved either numerically or analyti-
cally. It was shown by Khachaturyan that, in the homogeneous modulus approximation, the elastic energy of any
arbitrary microstructure can be analytically calculated. However, the elastic energy is a double-volume integral of infinitely
long-ranged elastic interactions in real space, and its contribution to the total driving force enters the Eq. (1) as a volume
integral, a nonlocal term (see [4,24]). Therefore, direct numerical solution in real space is prohibitively difficult. In Fourier
space, the elastic energy is reduced to a single volume integral of the Fourier transform of the elastic interactions. For exam-
ple, for the scheme (12), we need only modify AðkÞ and BðkÞ on the offline stage as



Fig. 1. Temporal morphological evolutions with c ¼ 0:5 and u0 ¼ 0 at different time: (a) t ¼ 10; (b) t ¼ 30; (c) t ¼ 50; (d) t ¼ 100; (e) t ¼ 500; (f) t ¼ 1000.

Fig. 2. Same as Fig. 1, except with u0 ¼ 0:45.
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AðkÞ ¼ 1þ 1
2
sBðeÞjkj2 þ 1

2
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� 	�1

1� 1
2
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� 	
;

BðkÞ ¼ 1þ 1
2
sBðeÞjkj2 þ 1

2
csjkj4 þ bs2jkj2

� 	�1

sjkj2:
ð13Þ
where e is a unit vector in Fourier space and BðeÞ is the Fourier transform of the long-range elastic interactions. For a cubic
two-phase solid and assuming that the lattice parameter difference between the two phase is directly proportional to their
compositional difference, i.e., Vegard’s law, in a two-dimensional model, BðeÞ is given by [4,24]



Fig. 3. The morphological evolutions with c ¼ 0:2 and u0 ¼ 0:45 at different time: (a) t ¼ 10; (b) t ¼ 50; (c) t ¼ 100; (d) t ¼ 1000; (e) t ¼ 2000; (f) t ¼ 3000.

Fig. 4. The morphological evolutions with c ¼ 0:5;u0 ¼ 0 and Bel ¼ 2 at different time: (a) t ¼ 10; (b) t ¼ 30; (c) t ¼ 50; (d) t ¼ 100; (e) t ¼ 500; (f) t ¼ 1000.
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BðeÞ ffi Bele2
x e2

y ;
where ex and ey are the x and y components of the unit vector e, and BðeÞ is a material constant which depends on the elastic
constants and misfit strain. A positive value for Bel represents a system with negative elastic anisotropy. It is clear from (13)
that the elastic energy contribution to the total driving force have no more cost on the online stage. In Figs. 4 and 5, we pre-



Fig. 5. The morphological evolutions with c ¼ 0:2; u0 ¼ 0:45 and Bel ¼ 1:25 at different time: (a) t ¼ 10; (b) t ¼ 30; (c) t ¼ 50; (d) t ¼ 100; (e) t ¼ 500; (f)
t ¼ 1000.

Fig. 6. The morphological evolutions at time t ¼ 1000 for different time step, c ¼ 1; u0 ¼ 0:45: (a) Bel ¼ 0, s ¼ 0:5; (b) Bel ¼ 0, s ¼ 1; (c) Bel ¼ 0, s ¼ 2; (d)
Bel ¼ 1, s ¼ 0:5; (e) Bel ¼ 1, s ¼ 1; (f) Bel ¼ 1, s ¼ 2.
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sented the temporal evolution of strain-dominated morphological patterns during spinodal decomposition and subsequent
coarsening.

We point out here, our implicit time discretization for the elastic energy is different from the explicit discretization in
[4,24], and thus the scheme is still stable. In Fig. 6, we present the simulation results for different time step. A fixed algorith-
mic time step driving scheme may also provide significant speedup.
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5. Conclusions

In this paper, we have presented a class of stable spectral schemes for the Cahn–Hillard equation. We have demonstrated
that a fixed algorithmic time step driving scheme may provide higher accuracy and significant speedup. Although our algo-
rithms allow large algorithmic time steps, caution is indicated, as taking too large an algorithmic time step will yield inac-
curacies. This saturation in the speedup results from the details of how the system’s energy evolution (and its corresponding
microstructural evolution) is governed by the effective time step.

Although we have only considered the periodic boundary conditions here, the dissipative schemes can also be efficiently
applied to the time-dependent Ginzburg–Landau (TDGL) and Cahn–Hilliard equations with Dirichlet, Neumann or mixed
boundary conditions by using the Legender spectral or spectral element methods. On the other hand, the proposed method
has also its limitations. It is most efficient when applied to problems whose principal elliptic operators have constant coef-
ficients, although problems with variable coefficients can be treated with slightly less efficiency, for instance, by an iterative
procedure or by a collocation approach. Also, since the proposed method uses a uniform grid for the spatial variables, it may
have difficult to resolve extremely sharp interfaces with a moderate number of grid points. In this case, an adaptive spectral
method may become more appropriate.

It is expected that the numerical schemes proposed in this work may have extensive applications in a wide class of non-
equilibrium systems. For example, it can be applied to the phase field crystal model and martensitic transformations. This
method should allow researchers to dramatically improve the computational efficiency and accuracy associated with mod-
eling the dynamics of materials systems. On the other hand, the present methodology developed in this paper is certainly
limited to the dynamical model of transport that only has a first-order of time derivative of the order parameter. It would
certainly be interesting to attempt to extend this methodology to the dynamics of phase transitions that contain higher-
order term, such as those that violate the assumption of local equilibrium. Theoretical analysis for the dissipative schemes
also seems challenging.
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